

CHAUFFE-EAU ELECTRIQUES INSTANTANNES

Foisonnement et saisie RE 2020 Simulations comparatives RT 2012 et RE 2020 Chauffe-eau électriques instantanés CLAGE vs chauffe-eau électriques traditionnels

SOMMAIRE

1.	Calcul du coefficient de simultanéité	3
1.1.	Préambule	3
1.2.	Description des méthodes	3
1.2.1.	Guide technique Costic MTA avril 2016	3
1.2.2.	DTU 60.11 (P1-1) - Règles de calcul EF ECS	4
1.2.3.	Norme DIN 1988-300	6
1.3.	Comparaison des méthodes par l'exemple	7
1.4.	Conclusion	8
2.	Tutoriel saisie logiciel RE 2020	9
2.1.	Perrenoud U22Win V6	9
2.1.1.	Saisie tableur	9
2.1.2.	Saisie graphique	10
2.2.	BBS SLAMA Climawin 2020	12
2.2.1.	Saisie tableur	12
2.2.2.	Saisie graphique	13
2.3.	IZUBA Pleiades Energie	16
2.3.1.	Saisie tableur	16
2.3.2.	Saisie graphique	17
3.	Simulations comparatives RT 2012 ET RE 2020 chauffe-eau	
	électroniques instantanés CLAGE vs chauffe-eau traditionnels	19
3.1.	Rappel sur les réglementations en vigueur	19
3.2.	Présentation des simulations réalisées	20
3.3.	Exemple de calculs réalisés sur un usage de bureaux	21
3.4.	Conclusion	22
3.5.	Synthèse des profils réglementaires de soutirage ECS	23
3.5.1.	Bureau	23
3.5.2.	Enseignement primaire	23
3.5.3.	Crèche	23
3.5.4.	Etablissements sanitaires sans hébergement	24
3.5.5.	Commerce	24
3.5.6.	Industrie	24

1. Calcul du coefficient de simultanéité

1.1. Préambule

L'objectif de calcul d'un coefficient de simultanéité est de foisonner la prise en compte de la puissance électrique liée au fonctionnement des chauffe-eaux instantanés dans le bilan de puissance électrique du bâtiment.

En effet, la puissance électrique appelée est liée au débit de soutirage d'eau chaude sanitaire sur les appareils qui ne fonctionneront pas tous ensemble.

La puissance électrique nécessaire au réchauffage de l'eau chaude sera donc proportionnelle à ce débit de puisage.

Il n'existe, à priori, à ce jour, aucune méthode pour calculer le foisonnement à opérer sur le dimensionnement des installations électriques de raccordements des chauffe-eaux électriques instantanés.

Toutefois, il existe différentes méthodes permettant de déterminer le coefficient de simultanéité de soutirage d'eau chaude :

- La méthode COSTIC MTA avril_2016
- La méthode DTU 60.11 (P1-1) Règles de calcul EF ECS
- La norme allemande DIN 1988-300

Nous allons comparer ces 3 méthodes afin de déterminer celle à retenir pour le calcul de foisonnement sur le dimensionnement des installations électriques par extrapolation au calcul du débit probable.

1.2. Description des méthodes

1.2.1. Guide technique Costic MTA avril 2016

Cas des MTA avec fourniture d'ECS uniquement :

Dans ce cas, la puissance foisonnée correspond à :

 $P_{foisonn\'{e}} = N s P_{ECS moy}$

Avec:

- N: le nombre de logements
- P_{ECSmoy}: la puissance ECS moyenne de l'ensemble d'appartements
- s : le coefficient de simultanéité.

Pour N < 15, les valeurs du tableau suivant sont à utiliser :

Nombre d'appartements	Coefficient s
1	1
2	0,529
3	0,372
4	0,293
5	0,246
6	0,215
7	0,192
8	0,176
9	0,162
10	0,152
11	0,145
12	0,136
13	0,130
14	0,125

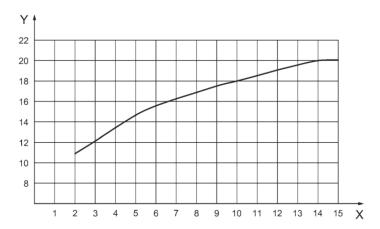
Pour N ≥ 15, l'équation suivante doit être utilisée :

$$s = \frac{0.8}{\sqrt{3N - 1}}$$

1.2.2. DTU 60.11 (P1-1) - Règles de calcul EF ECS

Rappel des débits par appareil :

Le tableau ci-dessous indique les débits minimaux (en l/s) à prendre en considération pour le calcul des installations d'alimentation des canalisations d'alimentation des appareils pris individuellement.


Désignation de l'appareil	Q _{min} de calcul en l/s
Evier	0,20
Lavabo	0,20
Baignoire	0,33
Douche	0,20
Poste d'eau robinet 1/2	0,33
Poste d'eau robinet ³ / ₄	0,42
Lave mains	0,10

Petits groupes d'appareils :

Chaque appareil individuel est affecté d'un coefficient suivant le tableau ci-dessous :

Appareils	Coefficients
Lavabo, lave-mains	1,5
Douche, poste d'eau	2
Evier	2,5
Baignoire ≤ 150 l de capacité	3
Baignoire ≥ 150 l de capacité	3 + 0,1 par tranche de 10 litres supplémentaires

La somme des coefficients (X) permet avec le graphique de la figure suivante de déterminer le diamètre minimal d'alimentation du groupe d'appareils (Y), à partir de deux appareils.

Cette courbe empirique peut également s'écrire sous la forme de l'équation suivante :

$$Y = 8.9386 X^{0,3039}$$

Légende

X : coefficient fonction du nombre d'appareils

Y: diamètre intérieur minimum (mm)

A partir du diamètre déterminé par cette méthode, on peut en déduire un débit probable simultané en considérant une vitesse de passage.

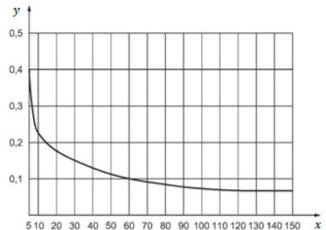
On peut donc en déduire un débit simultané en fonction de la somme des coefficients suivant la relation :

$$Qs = \frac{79,899\pi X^{0,6078}.V}{4000} = 0.02\pi V X^{0,6078}$$

Avec:

• Qs : Débit simultané

• X : coefficient fonction du nombre d'appareils


V : Vitesse.

D'après le DTU, les tableaux de la méthode simplifiée tiennent compte d'une vitesse de 2 m/s. Arbitrairement, nous fixerons une vitesse de 1.75 m/s afin d'obtenir une continuité et une cohérence entre la méthode « *Petits groupes d'appareils* » et la méthode « *Installations collectives* » ci-dessous.

Installations collectives

Lorsque le total des coefficients est supérieur à 15, il y a lieu de calculer suivant la méthode ci-dessous.

Les hypothèses de simultanéité indiquées ci-après sont faites pour le calcul des débits d'alimentation. Le débit servant de base au calcul du diamètre d'une canalisation est obtenu en multipliant la somme des débits des appareils par un coefficient donné par le graphique et la formule ci-dessous, en fonction du nombre d'appareils.

Légende

x : nombre d'appareils installés y : coefficient de simultanéité

Cette courbe correspond à la formule suivante :

$$y = \frac{0.8}{\sqrt{x - 1}}$$

Cette formule est valable pour x > 5.

Pour $x \le 5$, se reporter à la méthode « petits groupes d'appareils ».

Cette formule reste valable pour x > 150.

Note 1

Dans le cas des écoles, internats, stades, gymnases, casernes, il faut considérer que tous les lavabos ou douches peuvent fonctionner simultanément, sauf si l'installation est équipée de robinets à fermeture temporisée.

Note 2

Dans le cas des hôpitaux, maisons de retraite et foyers de personnes âgées et bureaux, le coefficient de simultanéité indiqué figure 4 n'est pas affecté d'un facteur particulier.

Note 3

Pour une chambre d'hôpital, seul le débit de l'appareil le plus demandeur (généralement la douche) est à prendre en compte pour l'eau chaude. Pour l'eau froide, il faut cumuler le débit de l'appareil le plus demandeur avec le débit de remplissage du réservoir WC.

Note 4

Il peut être admis que les débits prévus pour les points de puisage à usage ponctuel ne soient pas pris en compte dans les calculs.

Note 5

Dans le cas d'une utilisation de robinetteries type hydro-économes et de la prise en compte du débit d'eau chaude nécessaire à la fourniture de l'eau mitigée, les débits d'eau chaude et les diamètres des tubes pourront être optimisés. Une note de calcul justifiera la faisabilité.

1.2.3. Norme DIN 1988-300

Le débit de simultanéité est déterminé par la formule suivante :

$$q_s = a \times (\sum q_c)^b - c$$

Avec:

• q_s : débit de simultanéité

qc : somme des débits de l'ensemble du projet

• a, b et c : coefficients selon le type de bâtiment suivant tableau ci-dessous

Formule valable pour $0.2 \le \sum q_c \le 500 \text{ l/s}$

Type de bâtiment	а	b	С
Maisons, résidences-services, maisons de retraite	1,48	0,19	0,94
Maison de repos et hôpital	0,75	0,44	0,18
Hôtels	0,7	0,48	0,13
Ecoles, bâtiments administratifs	0,91	0,31	0,38
Maisons de soins infirmiers	1,4	0,14	0,92

1.3. Comparaison des méthodes par l'exemple

La méthode détaillée dans le guide du COSTIC MTA avril_2016, basée sur le nombre de logements, suppose qu'un logement est équipé de 3 appareils sanitaires et reprend strictement la formule de simultanéité de la méthode citée dans le DTU 60.11 (P1-1) - Règles de calcul EF ECS basée sur le nombre d'appareils sanitaire.

On peut donc considérer que la méthode COSTIC est sensiblement équivalente au DTU et ne présente pas d'intérêt, un chauffe-eau instantané n'alimentant qu'un seul appareil sanitaire simultanément.
Par conséquent, la méthode du Costic ne fera pas l'objet de la comparaison.

		Débit 0,	4 l/s	Débit 1,	,0 l/s	Débit 2,	0 l/s	Débit 5,	,0 l/s	Débit 10	,0 l/s	
		(équivalent 2	lavabos)	(équivalent 5	lavabos)	(équivalent 10) lavabos)	(équivalent 2	5 lavabos)	(équivalent 50 lavabos)		
Norme	Usage	Débit simult. qs	Coef. simult.	Débit simult. qs (I/s)	Coef. simult.	Débit simult. qs (I/s) Coef. simult.		Débit simult. qs	Coef. simult.	Débit simult. qs	Coef. simult.	
	Maisons, résidences-services, maisons de retraite	0,304	0,759	0,540	0,540	0,748	0,374	1,069	0,214	1,352	0,135	
DIN 1000	Maison de repos et hôpital	0,321	0,803	0,570	0,570	0,837	0,419	1,343	0,269	1,886	0,189	
300 DTU 60.11 (P1-1)	Hôtels	0,321	0,802	0,570	0,570	0,846	0,423	1,386	0,277	1,984	0,198	
(F1-1)	Ecoles, bâtiments administratifs	0,305	0,762	0,530	0,530	0,748	0,374	1,119	0,224	1,478	0,148	
	Maisons de soins infirmiers	0,311	0,779	0,480	0,480	0,623	0,311	0,834	0,167	1,013	0,101	
DTU 60.11 (P1-1)	Tous usages	0,214	0,535	0,374	0,374	0,570	0,285		0,163		0,114	

1.4. Conclusion

Dans les exemples ci-dessus, nous avons fait la comparaison de 5 types d'installation de tailles différentes selon les différents usages définis par la norme DIN afin de voir l'évolution des coefficients de simultanéité obtenus.

Pour la méthode définie dans le DTU, nous avons pris partie de ne pas tenir compte des modérations selon l'usage, notamment sur les chambres d'hôpitaux, afin de simplifier la comparaison qui aurait été trop complexe et pas nécessairement justifiée.

D'autre part, pour les raisons précitées, la méthode du Costic n'a pas l'objet de la comparaison.

La norme allemande DIN 1988-300, contrairement aux deux autres méthodes, se base sur le débit sanitaire des appareils.

Pour la comparaison des 2 méthodes, il a donc fallu spécifier un nombre et type d'appareil associé au débit.

Nous constatons alors que le coefficient de simultanéité issu du DTU est inférieur à celui de la DIN d'environ 30%.

La norme DIN (Institut allemand de normalisation) est destinée à une utilisation en Allemagne principalement, tandis qu'en France la méthode reconnue est celle citée dans le DTU 60.11.

Il conviendra donc d'adopter la méthode du DTU majoré d'un coefficient de 1.30.

Nous obtenons alors le coefficient de foisonnement (ks) en fonction des formules suivantes :

Petits groupes d'appareils : (coefficient fonction du nombre d'appareils X<15) :

$$ks = \frac{1,30 \ Qs}{Q} = \frac{0,026\pi V \ X^{0,6078}}{\sum Q_{min}}$$

Avec:

- ks : Coefficient de foisonnement
- X: coefficient fonction du nombre d'appareils (suivant tableau 2 page 4)
- Qmin: débits minimaux par appareil (suivant tableau 1 page 4)
- V : Vitesse.

Installations collectives : (coefficient fonction du nombre d'appareils X≥15) :

$$ks = \frac{1,04}{\sqrt{x-1}}$$

Avec:

ks : Coefficient de foisonnement
x : nombre d'appareils installés

2. Tutoriel saisie logiciel RE 2020

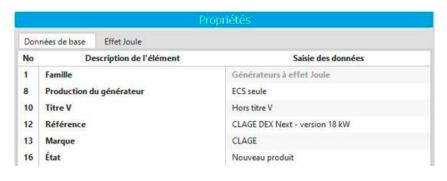

2.1. Perrenoud U22Win V6

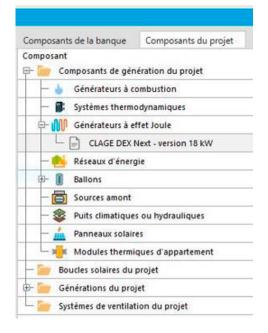

2.1.1. Saisie tableur

		CE	X 9	DEX	(12	Next		DE	X Next				М	СХ	
DONNÉES D'ENTRÉE	Unité	6,6 kW	8,8 kW	8,8 kW		11,5 kW	18 kW	21 kW	24 kV		27 kW	MCX 3	мсх 4	мсх 6	MCX 7
GENERATION			1,100									(-)			
Services assurés	/							ECS	seule	е					
Production ECS solaire collective individualisée (CESCI)	/							Dé	coché						
Production ECS solaire collective à appoints individuels (CESCAI)	/							Dé	coché						
Type de gestion	/							Sans	priori	ité					
Raccordement hydraulique	/						Avec p	ossibi	lité d'	isole	ement				
Position de la production	/			En fo	nctio	on du	projet	t (géne	éralen	nent	en vo	olume d	chauffé)	
Emplacement de la production	/						Dans	le bâti	ment	cond	cerné				
Température de fonctionnement	°C								3°C						
Type de production ECS	/						Décei	ntralis	ée ins	tant	anée				
GENERATEUR															
Type de générateur	/					5	01 / G	énéra	teur d	'ECS	direc	ct			
Service du générateur	/	ECS seule													
Puissance	kW	6,6	8,8	8,8	3 1	11,5	18	21	24	1	27	3,5	4,4	5,7	6,5
EMISSION															
Type d'ECS	/								ctrique						
Surface de groupe concernée	m²								défau	-					
Liée à la génération	/				Li	ier à I	a géné			éden	nmen	t créée			
Lié par un réseau collectif	/								ucun						
Diamètre intérieur distribution	mm					En	foncti			reil	racco	rdé			
Température du réseau ECS	°C								5°C						
Liaison à l'espace tampon	/	En fo	onction	ı du p	roje	t (gér	néraler	nent e	en volu	ume	chau	ffé don	c sans	liaison	b=1)
Liée à une récupération eau grise	/														
Part des besoins d'ECS passant par des mélangeurs	%														
Part des besoins d'ECS passant par des mitigeurs	%														
Part des besoins d'ECS passant par des robinets électro.	%	En fonction du projet suivant appareillage, distribution et robinetterie													
Type d'appareils sanitaires ECS lié à l'émetteur ECS équivalent	/														
Coef. Correctif besoins connus	/														
Nombre de distribution identique	U														
Longueur en volume chauffé	m				Va	alorisa	able se	lon lo	ngueu	r ré	elle d	u proje	t		
Longueur hors volume chauffé	m						En	foncti	on du	proj	jet				

2.1.2. Saisie graphique

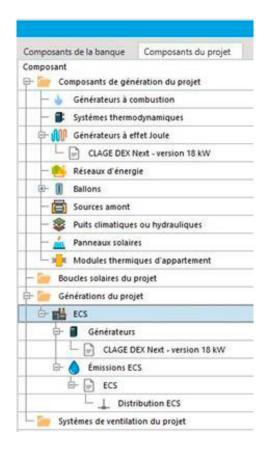
2.2. BBS SLAMA Climawin 2020

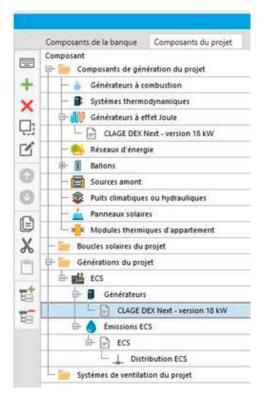

2.2.1. Saisie tableur

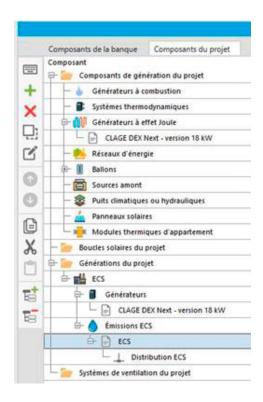

DONNÉES D'ENTRÉE	Unité	CE	X 9	DEX 1	2 Next		DEX	Next		мсх			
DONNEES D'ENTREE	Unite	6,6 kW	8,8 kW	8,8 kW	11,5 kW	18 kW	21 kW	24 kW	27 kW	MCX 3 (E)	MCX 4	мсх 6	MCX 7
Générateur à effet Joule							<u>'</u>	<u>'</u>	<u>'</u>				
Production du générateur	/	ECS seule											
Titre V	/						Hors	titre V					
Référence	/						Selon	projet					
Marque	/						CLA	AGE					
Etat	/					N	louvea	u produ	it				
Puissance nominale en chaud	kW	6,6	8,8	8,8	11,5	18	21	24	27	3,5	4,4	5,7	6,5
ECS													
Emplacement de la génération	/					V	olume	habitab	le				
Fonction de la génération	/						E	CS					
Présence d'une composante solaire	/					Sans	compo	sante s	olaire				
Type de distribution	/						Indivi	iduelle					
Présence de stockage	/					Pas de	e ballor	n de sto	ckage				
Priorité entre générateurs	/					Sans o	bjet o	ı sans ı	oriorité				
Raccordement réseaux distribution	/	Avec possibilité d'isolement											
Température de fonctionnement ECS instantanée	°C						53	3,0					
Etat de la génération	/					No	uvelle (générat	ion				
Maintien en température	/				N	on mai	ntenue	en tem	pératu	re			
Nombre générateurs identiques							Selon	projet					
Utilisation générateur en ECS						Prod	uction	instant	anée				
Emission ECS													
Mélangeurs / mitigeurs mécanique	%												
Mitigeurs thermostatique et mécanique éco	%		En f	notion	du proje	t auivar	+	roillage	diatril	oution et r	abinatt	orio	
Temporisateurs et robinets électroniques	%		E11 10	JIICUOII	au proje	L Sulvai	іс арра	remage	e, aistrii	bution et i	obinett	ene	
Type d'appareils sanitaire ECS	/												
Distribution ECS													
Détermination longueur en VC	m	Valorisable selon longueur réelle du projet											
Longueur réseau hors volume chauffé	m					En	fonctio	n du pr	ojet				
Diamètre intérieur	mm						12	2,0					
Température de distribution	°C						45	5,0					
Mode de saisie du besoin d'ECS	/						Par d	léfaut					



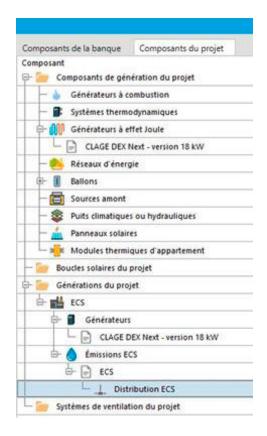
2.2.2. Saisie graphique



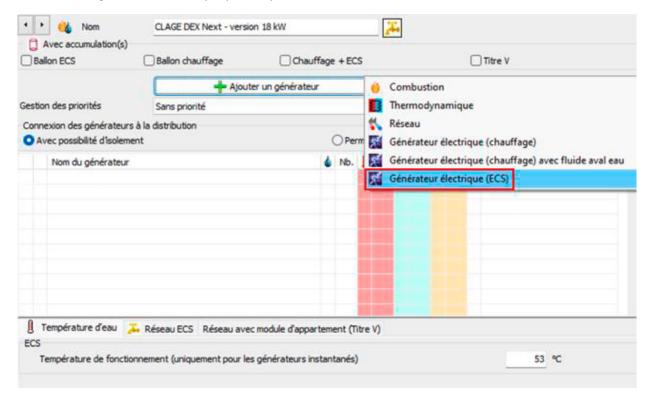




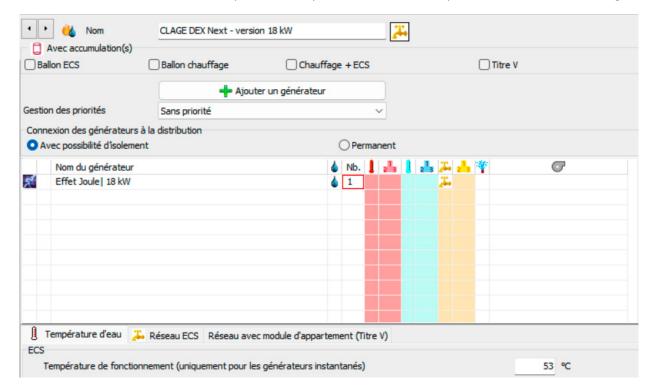
		Propr	iétés
Donr	ées de base	Informations DPE	
No	De	escription de l'élément	Saisie des données
1	Appellation		ECS
2	Emplacemen	t génération	Volume habitable
3	Fonctions de	la génération	ECS
4	Présence con	nposante solaire	Sans composante solaire
7	Titre V utilisé	1	Hors titre V
9	Type de distr	ibution	Individuelle
11	Présence de	stockage	Pas de ballon de stockage
17	Priorité entre	e générateurs	Sans objet ou sans priorité
19	Raccordeme	nt réseaux distribution	Avec possibilité d'isolement
25	Température	de fonctionnement ECS instanta	53.0 °C
32	État de la gér	nération	Nouvelle génération
34	Maintien en	température	Non maintenue en température



2.3. IZUBA Pleiades Energie

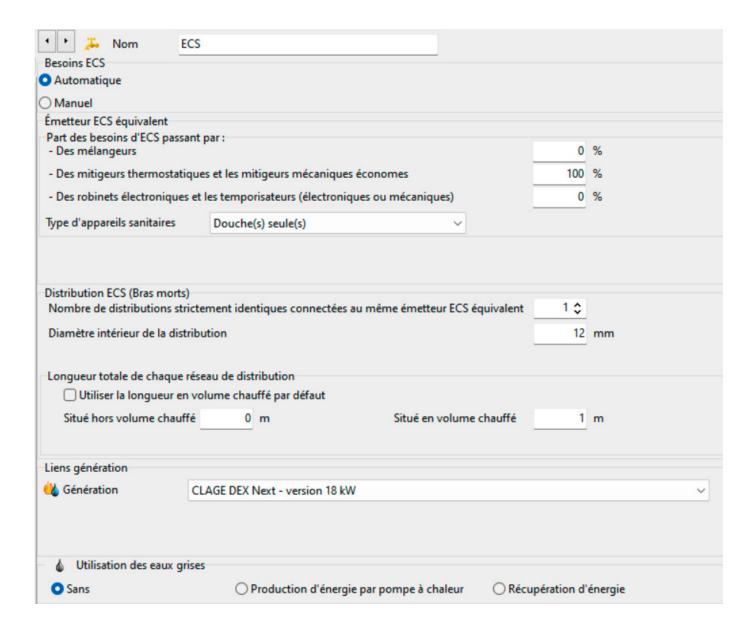

2.3.1. Saisie tableur

, ,		CE	X 9	DEX 12 Next		DEX Next				MCX			
DONNÉES D'ENTRÉE	Unité	6,6 kW	8,8 kW	8,8 kW	11,5 kW	18 kW	21 kW	24 kW	27 kW	MCX 3 (E)	мсх 4	мсх 6	мсх 7
GENERATION													
Avec accumulation	/						Dé	coché					
Gestion des priorités	/						Sans	priorité					
Connection des générateurs à la distribution	/					Avec p	ossibil	ité d'iso	lement	t			
GENERATEUR													
Ajouter un générateur	/					Généra	ateur é	lectriqu	e (ECS)			
Puissance	kW	6,6	8,8	8,8	11,5	18	21	24	27	3,5	4,4	5,7	6,5
Température de fonctionnement	°C	C 53°C											
EMETTEUR ECS													
Besoins ECS	m²/%						Autor	natique					
Part des besoins d'ECS passant par des mélangeurs	%												
Part des besoins d'ECS passant par des mitigeurs	%		En fon	ation o	lu projet	+ aia	nt ann	معمالامم	dictri	bution	at rabir		
Part des besoins d'ECS passant par des robinets électro.	%		EII IOII	iction c	lu projet	L Suiva	пс арр	aremage	, distri	DULIOI1 6	et robii	ietterie	
Type d'appareils sanitaires	/												
Nombre de distribution strictement identique	/							1					
Diamètre intérieur de la distribution	mm				En	foncti	on de l	'apparei	l racco	rdé			
Longueur du réseau de distribution située en volume chauffé	m												
Longueur du réseau de distribution située hors volume chauffé	m	En fonction du projet											
Lien génération	/	Lier à la génération précédemment créée											
Utilisation des eaux grises	/					En	fonctio	n du pr	ojet				



2.3.2. Saisie graphique

Création d'un générateur électrique pour la production d'eau chaude sanitaire :



Veiller à ne cocher aucune des cases présentes en partie haute afin de ne pas avoir de ballon de stockage :

Saisie de l'eau chaude sanitaire :

3. Simulations comparatives RT 2012 ET RE 2020 chauffe-eau électroniques instantanés CLAGE vs chauffe-eau traditionnels

3.1. Rappel sur les réglementations en vigueur

La Réglementation Environnementale 2020 (RE2020) est applicable depuis le $1^{\rm er}$ janvier 2020 pour les bâtiment neuf à usage résidentiel et depuis le $1^{\rm er}$ juillet 2022 pour les bâtiment neuf à usage de bureau ou d'enseignement.

Pour les autres usages, la RT2012, applicable depuis le 1er janvier 2013, reste en vigueur.

Figure 1 : frise chronologique

Les objectifs globaux des deux réglementations sont les suivants :

- Favoriser la conception bioclimatique de l'enveloppe,
- Maîtriser la consommation et limitation de la part des énergies non renouvelables,
- Maitriser le confort d'été,
- Limiter les émissions de Gaz à Effet de Serre en construction et exploitation (uniquement RE2020).

Derrière l'ensemble de ces objectifs, un calcul théorique est systématiquement réalisé. Au travers de la saisie de l'ensemble des caractéristiques du projet (enveloppe, vitrages, ponts thermiques, systèmes de production d'énergie), plusieurs indicateurs réglementaires sont vérifiés :

- Bbio (points): Besoins Bioclimatiques (impact des prestations du bâti: isolation des parois, menuiseries, ponts thermiques, altitude, orientation, compacité),
- Cep [kWhep/(m².ans)]: Consommation d'Energie Primaire totale (évaluation des consommations sur les postes chauffage, refroidissement, eau chaude sanitaire, éclairage, auxiliaires de générations, autres consommations).
- **CepNR** [kWhep/(m².ans)]: identique au Cep, mais calculé uniquement sur les consommations d'énergies primaires dites non renouvelables (énergies fossiles et électricité),
- **TIC** [°C]: Température Intérieure Conventionnelle (température intérieure maximale atteinte en été pendant une durée spécifique),
- DH [°C,h]: niveau d'inconfort perçu par les occupants sur l'ensemble de la saison chaude en Degrés Heure,
- **Ic Construction** [kg eq. CO2/m²]: évaluation des émissions de gaz à effet de serre des produits de construction et équipements et leur mise en œuvre (pendant 50 ans),
- Ic énergie [kg eq. CO2/m²]: évaluation des émissions de gaz à effet de serre des énergies consommées (pendant 50 ans).

Légende: RT2012; RE2020; Commun RT2012/RE2020

Nota : bien que certains indicateurs soient communs entre la RT2012 et la RE2020, les exigences pour atteindre leur conformité ont été renforcées en RE2020.

En complément à ces indicateurs, divers **garde-fous** et **exigences de moyen** ont été mis en place. On peut citer les plus importants :

- Mesure de perméabilité à l'air obligatoire en résidentiel (RT2012 et RE2020) et bureau (RE2020),
- Nécessité de traitement des ponts thermiques,
- Suivi des consommations réelles d'énergie du bâtiment (ou estimation en logement),
- Mise en place de protection solaires,
- Vérification des systèmes de ventilation (uniquement en logement et en RE2020),
- Surface vitrée minimale (uniquement en logement).

Le respect d'un bâtiment à la RE2020 n'est possible que si l'ensemble des indicateurs précédemment cités ainsi que les divers garde-fous sont conformes.

3.2. Présentation des simulations réalisées

L'objectif de ce document est de synthétiser les gains potentiels sur les consommations conventionnelles d'eau chaude sanitaires seule (C_{ecs}) et sur l'indicateur de Consommations en Energie Primaire (Cep) entre les deux solutions techniques suivantes :

- Chauffe-eau électrique classique à stockage,
- Chauffe-eau électrique instantané CLAGE.

Les hypothèses de calculs suivantes ont fait l'objet de simulations :

- Usages de bâtiment :
 - Bureaux (RE2020),
 - Enseignement primaire et secondaire (RE2020),
 - o Crèches (RT 2012),
 - o Etablissements sanitaires sans hébergement (RT 2012),
 - o Commerces (RT 2012),
 - Industries hors process (RT 2012).
- Zones géographiques : H1, H2, H3,
- Altitudes :
 - o ≤ 400m,
 - \circ 400 < alt ≤ 800m,
 - o >800m.
- Tranches de surface :
 - o 90 à 3540 m² selon les usages
- Capacités de stockage et/ou puissances : adaptés aux besoins sur bâtiment.

Les usages logement, hébergement, hôtel, établissements sportifs et restauration, dont les besoins en ECS et profils de soutirage non adaptés à l'utilisation de chauffe-eau instantanés, n'ont pas été modélisés.

Les calculs ont été réalisés sur le logiciel PERRENOUD U22Win v.6.0.321 du 09/10/2023 suivant les règles Th-BCE 2012 et 2020 et les moteurs de calcul respectifs V.8.1.0.0 du 15/01/2019 et v.2022.E3.0.0 du 07/12/2022 conçus par le CSTB.

3.3. Exemple de calculs réalisés sur un usage de bureaux

					Indicateur Ce	p	Consomma	ition convention	onnelle ECS
Usage	S	Altitude	Zone	Cep 1 Chauffe-eau instantané	Cep 2 Chauffe-eau classique	Gain Cep 1 / Cep 2	C _{ecs} * 1 Chauffe-eau instantané	C _{ecs} * 2 Chauffe-eau classique	Gain C _{ecs} 1 / C _{ecs} 2
Bureaux	88 m²	≤ 400m	H1a	94	99	5,1%	4,37	9,89	55,8%
Bureaux	88 m²	≤ 400m	H1b	98,4	103,5	4,9%	4,6	10,12	54,5%
Bureaux	88 m²	≤ 400m	H1c	92,4	97,7	5,4%	4,37	9,89	55,8%
Bureaux	88 m²	≤ 400m	H2a	85,1	90,2	5,7%	4,37	9,89	55,8%
Bureaux	88 m²	≤ 400m	H2b	84,7	90,2	6,1%	4,37	9,89	55,8%
Bureaux	88 m²	≤ 400m	H2c	84,8	90,2	6,0%	4,14	9,66	57,1%
Bureaux	88 m²	≤ 400m	Н3	95	100,5	5,5%	3,91	9,43	58,5%
Bureaux	88 m²	400 < alt ≤ 800m	H1c	100,1	105,2	4,8%	4,6	10,12	54,5%
Bureaux	88 m²	> 800m	H1c	111,4	116,4	4,3%	5,06	10,58	52,2%
Bureaux	1320 m²	≤ 400m	H1a	51,6	53,2	3,0%	4,14	5,98	30,8%
Bureaux	1320 m²	≤ 400m	H2b	48,9	50,4	3,0%	3,91	5,75	32,0%
Bureaux	1320 m²	≤ 400m	Н3	62,5	64,3	2,8%	3,45	5,29	34,8%

Légende: paramètre modifié d'une simulation à l'autre afin d'analyser l'incidence sur les résultats obtenus.

Nota : nous notons que le gain sur les consommations ECS est directement lié au volume de stockage par m² de bâtiment. Cela explique un gain inférieur pour les bâtiments de grande surface dans lesquels le nombre de ballon est mutualisé. Cette affirmation a été confirmée quel que soit l'usage des bâtiments simulés.

* C_{ecs} : consommations conventionnelles d'eau chaude sanitaire de la réglementation thermique (RT 2012 / RE 2020). Composante de l'indicateur Cep (en plus du chauffage, refroidissement, éclairage, auxiliaires, etc...).

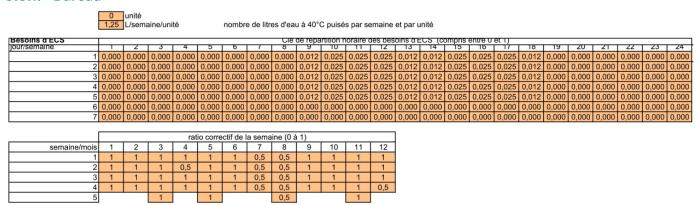
3.4. Conclusion

Pour un même bâtiment, les paramètres d'altitude, de zone climatique et de prestations d'isolation ne génèrent pas de différences significatives sur les gains obtenus.

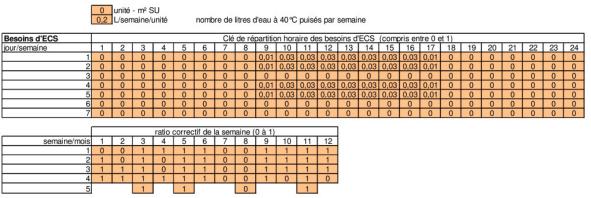
Pour chaque typologie de bâtiments, les résultats des simulations réalisées permettent de conclure :

Usage	Gain sur conso ECS	Gain sur le Cep
Bureaux RE2020	31 à 58%	2 à 6%
Enseignement primaire et secondaire RE2020	48 à 87%	3 à 5%
Crèches RT 2012	23 à 42%	3 à 7%
Etablissements sanitaires sans hébergement RT 2012	46 à 84%	2 à 4%
Commerces RT 2012	47 à 86%	1 à 2%
Industries hors process RT 2012	52 à 93%	1 à 2%

On peut en conclure que les gains sur la consommation ECS sont directement liés au profil de soutirage. En effet, des puisages fréquents et de courte durée sont plus favorables à une production instantanée et par conséquent mieux valorisés dans les réglementations thermiques.


Les résultats présentés sont donnés à titre indicatifs et représentent des moyennes et tendances issues des simulations réalisées.

Compte tenu des nombreux paramètres pris en compte dans une étude thermique, il est impératif de faire valider par un calcul spécifique au projet concerné la véracité des conclusions ci-dessus.


3.5. Synthèse des profils réglementaires de soutirage ECS

3.5.1. Bureau

Le pourcentage conventionnel des besoins hebdomadaires d'ECS dédiés aux douches et/ou aux bains = 50%

3.5.2. Enseignement primaire

Le pourcentage conventionnel des besoins hebdomadaires d'ECS dédiés aux douches et/ou aux bains = 0%

3.5.3. Crèche

L/semaine/nb de Lit nombre de litres d'eau à 40°C puisés par semaine Clé de répartition horaire des besoins d'ECS (compris entre 0 et 1) jour/semaine 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ratio correctif de la semaine (0 à 1) semaine/mois 10 11 12 0,5 0,5 0,5 0,5

Le pourcentage conventionnel des besoins hebdomadaires d'ECS dédiés aux douches et/ou aux bains = 50%

3.5.4. Etablissements sanitaires sans hébergement

0	unité	par m² de surface utile
0,24	L/semaine/unité	nombre de litres d'eau à 40°C puisés par semaine

	Clé de répartition horaire des besoins d'ECS (compris entre 0 et 1)															\neg								
jour/semaine	1	2	3	4	5	6	7	- 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

			ratio	corr	ectif c	de la s	semai	ne (0	à 1)						
semaine/mois	1	1 2 3 4 5 6 7 8 9 10													
1	1	1	1	1	1	1									
2	1	1	1	1	1	1	1	1	1	1	1	1			
3	1	1	1	1	1	1	1	1	1	1	1	1			
4	1	1	1	1	1	1	1	1	1	1	1	1			
5	1 1														

Le pourcentage conventionnel des besoins hebdomadaires d'ECS dédiés aux douches et/ou aux bains = 0%

3.5.5. Commerce

	0,24	L/sem	naine/u	nité		m² SF nombi		itres d'e	au à 4	Ю°С рі	uisés p	ar sem	naine p	ar unit	ré									
		Clé de répartition horaire des besoins d'ECS (compris entre 0 et 1)																						
jour/semaine	1															18	19	20	21	22	23	24		
	0	0	0	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1 0	0	0	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Į.	0	0	0	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

				ratio	corre	ctif de	la sem	aine (0	à 1)							
semaine/mois	1	1 2 3 4 5 6 7 8 9 10														
1	1	1 1 1 1 1 1 1 1 1 1 1														
2	1	1 1 1 1 1 1 1 1 1 1 1 1														
3	1	1	1	1	1	1	1	1	1	1	1	1				
4	1	1 1 1 1 1 1 1 1 1 1														
5	1 1 1															

Le pourcentage conventionnel des besoins hebdomadaires d'ECS dédiés aux douches et/ou aux bains = 0%

3.5.6. Industrie

0 unité m² surface utile nombre de litres d'eau à 40 °C puisés par semaine et par unité

Besoins d'ECS	10	Clé de répartition horaire des besoins d'ECS (compris entre 0 et 1)																						
jour/semaine	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

			ratio	corre	ectif c	le la s	semai	ne (0	à 1)						
semaine/mois	1	1 2 3 4 5 6 7 8 9 10 1													
1	1	1 1 1 0 0 1 1 1 0 0 0													
2	0	0	0	1	1	0	0	0	1	1	1	0			
3	1	1	1	0	0	1	1	1	0	0	0	1			
4	0	0	0	1	1	0	0	0	1	1	1	0			
5	1 0 1 0														

Le pourcentage conventionnel des besoins hebdomadaires d'ECS dédiés aux douches et/ou aux bains = 0%